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THRUST COEFFICIENTS OF LOW-THRUST NOZZLES 

by E r n i e  W. Spisz, P a u l  F. B r i n i c h ,  a n d  John R. Jack 

Lewis Research C e n t e r  

SUMMARY 

The performance losses associated with small nozzles operating at low propellant 
flow rates were investigated experimentally with a resistance-heated hydrogen thrustor. 
Data were obtained for seven different nozzles covering the range of nozzle a rea  ratio 
from 25 to 150, hydrogen propellant flow rates of 0 . 5 ~ 1 0 - ~ ,  1. OX10-4, and 2.5X10- 
pound per second, and propellant temperatures from 530' to 4000' R. 

The nozzle losses, as determined by the difference between the one-dimensional 
isentropic thrust coefficient and the measured thrust coefficient, were correlated in 
terms of the throat Reynolds number and nozzle a rea  ratio. 
ber, the nozzle losses were sufficiently large to result in measured thrust coefficients 
less than the values calculated for isentropic flow through a choked orifice. Results 
show that large area ratios a r e  not required for achieving maximum thrust for nozzles 
with low throat Reynolds number (<lo 000). 
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At low throat Reynolds num- 

I NTRO DU CTI ON 

It has been generally recognized (refs. 1 and 2) that viscous boundary-layer and heat- 
transfer effects on the divergent surfaces of supersonic nozzles can degrade the per- 
formance (thrust, specific impulse, and efficiency) of low-thrust thermal-propulsion de- 
vices. 
not been of immediate concern because they are negligible for the relatively high thrust 
levels (>500 millipounds) of thrustors that are being developed. The experimental per- 
formance values of these thrustors a r e  generally within a few percent of the calculated 
values for a one-dimensional isentropic nozzle-expansion process. 
dimensional isentropic nozzle-expansion calculations for hydrogen are presented in 
refs. 3 and 4.) However, for lower thrust levels (<lo0 millipounds, which may be de- 
sirable for applications such as attitude control of space vehicles) the boundary-layer and 

The performance losses associated with these nozzle-expansion effects have 

(Typical one- 



heat-transfer effects that occur in the divergent portion of the nozzle become more pro- 
nounced. For such small, low-thrust nozzles, the boundary layer can account for a sub- 
stantial portion of the available nozzle flow area. The boundary layer introduces viscous 
losses and al ters  the free-stream conditions so that the conventional assumption of a one- 
dimensional isentropic expansion process becomes questionable. The nozzle flow is fur- 
ther modified as a result of the thermal boundary layer and the corresponding heat- 
transfer effects that are intimately coupled to both the free-stream and boundary-layer 
flows. For low propellant flow rates, heat-transfer losses to the nozzle walls can be a 
significant portion of the total thermal energy available for conversion to kinetic energy. 

Little experimental data are available for estimating the boundary-layer and heat- 
transfer losses at low-thrust levels. Some overall performance data a re  presented in 
references 5 and 6, but these data primarily indicate only the performance losses that 
can occur at low-thrust levels. The program herein was undertaken to study further the 
nozzle losses from performance data obtained with the radiation-cooled resistojet of ref- 
erence 7. Previous experience with this radiation-cooled resistojet at low-thrust levels 
had indicated that, as the propellant flow rate was decreased corresponding to a reduction 
in thrust level, the thrust coefficient also decreased. This decrease in thrust coefficient 
was interpreted in terms of a Reynolds number effect. This effect is investigated herein 
and covers nozzle throat Reynolds numbers ranging approximately from 500 to 18 000. 
This range was obtained by varying propellant flow rate, nozzle throat diameter, and vis- 
cosity (by propellant temperature changes). The effects of nozzle a rea  ratio were studied 
for seven different nozzles with area ratios ranging from 25 to 150. All nozzle divergent 
sections were conical and had a divergence angle of 20'. Hydrogen was used exclusively 
as the propellant, and data were obtained for propellant temperatures ranging from 530' 
to 4000' R. 

PERFORMANCE CONSIDERATIONS 

For a conical nozzle such as that shown in figure 1, the thrust that would be de- 
veloped in a vacuum environment is given by 

(All symbols a r e  defined in appendix A. ) 
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Figure 1. - Schematic drawing of nozzle. 

For a one-dimensional isentropic expansion process, equation (1) can be integrated 
and the thrust given by (ref. 8) 

W Fi = - ueX + p A e e  
g 

where h is the nozzle angle divergence coefficient, X = :(l + cos a). 

the following equation for the thrust coefficient, in terms of the nozzle area ratio, pro- 
pellant specific heat ratio, and nozzle divergence angle, results: 

If the thrust is nondimensionalized to obtain the thrust coefficient CF = F/PoAth, 

f y+l I- 
1 (%4} /2 

+ Pe 5 
*th 

(3) 

To calculate the thrust for  a nonisentropic and non-one-dimensional nozzle-expansion 
process, equation (1) requires that the distribution of density, velocity, and pressure at 
the nozzle exit be known. If this information is unavailable, it is necessary to resort  to  
approximate calculation techniques. A technique often used is to define the thrust as the 
difference between the calculated isentropic thrust and an estimated thrust-loss term: 

F = Fi - FQ (4) 

For small nozzles, the thrust-loss term is composed primarily of viscous drag on the di- 
vergent surfaces of the nozzle and heat-transfer losses incurred during the expansion 
process: 

Fp = Fv + Fht ( 5) 
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The thrust loss due to heat-transfer losses to the nozzle walls Fht can be estimated 
for a specific nozzle geometry, cooling design, and operating condition. This loss, how- 
ever, is minor for  radiation-cooled thrustors except at very low propellant flow rates  and 
therefore will not be evaluated here. 
by the integral of the local shear s t ress  T over the divergent surfaces of the nozzle: 

The thrust loss due to viscous effects Fv is given 

Fv =L 2mr7 cos a! ds  (6) 

The magnitude of this loss can be estimated by assuming that the local shear s t ress  
is given by the skin friction relation for laminar flow over a flat plate (ref. 9). Although 
the laminar flat plate relation does not apply directly to axisymmetric nozzle flow with 
its inherent axial variations in the flow conditions and possible turbulence, the resulting 
estimates provide a simple first approximation for the comparison with experiment. 

face of a conical nozzle was derived in appendix B and is given by 
With this assumption, the loss in thrust coefficient due to viscous drag on the sur- 

0.664 fo 

(Reth tan @) 
c =  

FV 

where 

f = y  - 

0 i" 
f =  1 

5y-3 
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Figure 2. - Viscous losses as given by laminar-f low flat-plate theory. Stagnation temperature, 
530" R; wall-  to stagnation-temperature ratio, 1.0. 

In order to evaluate C it is necessary to specify the wall temperature and the 

nozzle stagnation conditions. The local flow conditions throughout the nozzle can be de- 
termined approximately in terms of the stagnation conditions from one-dimensional 
isentropic-flow relations. The local stream conditions, M and T/To, in the factor f 2  
may be evaluated at either the geometric nozzle area ratio (uncoupled case) or an ef- 
fective nozzle area ratio (coupled case). 
fluence of the boundary layer on the local stream properties in terms of a reduced nozzle 
a rea  ratio. 
the displacement thickness 6 *  by 

FV 

The coupled case attempts to include the in- 

For the coupled case, the effective nozzle area ratio is defined in terms of 

where 6*/r is determined as outlined in appendix B. 

gen ( y  = 1.4) at cold-flow conditions (To = 530' R, Tw/To = 1.0) fo r  both the uncoupled 
and coupled cases. As the value of the parameter (Reth tan a) decreases, the loss in 
thrust coefficient due to viscous effects increases. 

of 20' for the coupled solution. 
ratio and decreasing throat Reynolds number a r e  evident. 

figure 3, for a nozzle divergence angle of 20'. 
preliminary calculations showed that, for a given nozzle area ratio and throat Reynolds 

Figure 2 presents the results for the numerical integration of equation (7) for hydro- 

Figure 3 presents the loss in thrust coefficient for a nozzle with a divergence angle 
The increasing losses resulting from increasing a rea  

Figure 4 presents the net thrust coefficient, including the viscous losses, as given in 
This divergence angle was  used because 
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Figure 3. - Loss i n  t h r u s t  coefficient due to viscous effects as given by 
laminar-f low flat-plate theory. Stagnation temperature, 530" R; wall-  
to stagnation-temperature ratio, 1.0; nozzle divergence angle, M". 
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F igure 4. - Th rus t  coefficient i nc lud ing  viscous losses as given by laminar-f low f lat-  
plate theory. Stagnation temperature, 530" R; wall- to stagnation-temperature 
ratio, 1.9 nozzle divergence angle, 20". 

number, the thrust coefficient is not greatly affected by changes in the divergence angle 
for 15' < a! < 25'. 
figure 4, occurs because the gains due to the increased area ratio a re  less  than the addi- 
tional viscous losses imposed by the increased surface area. 
thrust coefficient and the low optimum area ratios at low throat Reynolds numbers a r e  
important factors that must be considered for the application of low-thrust devices. 

The optimization of the thrust coefficient with area ratio, as shown in 

The significant loss in 

EXPERIMENTAL APPARATUS 
The objective of this experimental program was to obtain performance data on a 
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I - A  Stagnation 

Figure 5. - W i r e  co i l  resistance-heated th rus to r  

resistojet with hydrogen as the propellant at low-thrust levels for various nozzle a rea  
ratios and throat Reynolds numbers. 
ing the necessary data in that its operating characteristics a r e  inherently stable and re-  
liable over a wide range of operating conditions. A specified operating point can be se t  
and maintained until equilibrium conditions a r e  achieved. 

The resistojet is reasonably well suited for provid- 

Th r u stor Description 

The performance of resistance-heated hydrogen thrustors has been under investiga- 
tion for a number of years.  Results of some of these studies a r e  presented in references 
7, 10, and 11. 
present investigation. Basically, the design consists of a tungsten-wire coil heater in- 
serted into a nozzle body. 
layer of insulation to minimize heat losses. The propellant is heated while passing di- 
rectly over the heater coil and is expelled through the nozzle. 
different nozzle geometries used during the experimental program to provide the desired 
variations in nozzle area ratio and throat diameter. 
used that differed only in size and method of supporting the heater coil. 

Figure 5 illustrates the thrustor design used in reference 7 and in the 

The outer surface of the nozzle body is surrounded by a thick 

Table I indicates the seven 

Two basic thrustor designs were 
These two 
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TABLE I. - NOZZLE GEOMETRIES AND COLD-FLOW DATA 

Measured 
thrust, 

Fmp 
l b  

6 0 . 9 ~ 1 0 - ~  
22. 9 
10. 57 

61.  ~ x I O - ~  
23. 9 
10.78 

; 1 . 2 ~ 1 0 - ~  
23. 1 
LO. 58 

i9. 
t2.05 
10.02 

j l .  7x10- 
32.7 
LO. 46 

3 

i9. ~ X I O - ~  

!l. 85 
.o. 02 

19. 8X10-3 
12. 5 
0. 14 

Measured 
thrust 

:oefficienl 
C 

Fm 

1.455 
1.318 
1.192 

1.442 
1.353 
1.222 

1.438 
1.331 
1.175 

1.425 
1.234 
1.081 

1.526 
1.355 
1.182 

1.415 
1.224 
1.052 

1.456 
1.350 
1.188 

)iff erencc 
between 

:alculated 
sentropic 
and mea- 

sured 
thrust 

oefficient 

FQ 
C 

0. 197 
.334 
.460 

0.235 
.324 
.455 

0.253 
.360 
. 516 

0.271 
.462 
.615 

0.170 
.341 
. 514 

0.255 
.446 
.618 

0.249 
.355 
.517 

Throat 
leynoldr 
number 

Reth 

11 000 
4 400 
2 200 

10 700 
4 280 
2 140 

11 000 
4 400 
2 200 

10 420 
4 170 
2 085 

9 730 
3 890 
1 9 4 5  

6 080 
2 430 
1 2 1 5  

18 330 
7 320 
3 665 

~~ 

?ropellant 
flow rate,  

w, 
lb/sec 

2 .5x10-~  
1 . 0  
. 5  

2 .5x10-~ 
1 . 0  
. 5  

2 . 5 x 1 0 - ~  
1 . 0  
. 5  

2 . 5 x 1 0 - ~  
1 . 0  

. 5  

2. 5 x 1 0 - ~  
1. 0 
. 5  

2 .5x10-~  
1. 0 
. 5  

2 .5x10-~ 
1 .0  
. 5  

Nozzle 
area 
ratio, 

%/%h 

Nozzle 
throat 
flow 
area, 

sq in. 
Ath' 

[sentropic 
thrust 

:oefficient! 

Fi 
C 

Measured 
total 

pressure,  

'm, 
psia 

11. 5 
4. 79 
2. 44 

11.18 
4. 60 
2. 30 

11.73 
4. 78 
2.48 

~~ 

10. 3 
4.39 
2. 28 

8. 7 
3. 6 
1.9 

3. 55 
1. 50 
. 80 

31.05 
12.62 
6. 48 

Unit 
designa- 

tion 

(a) 

3W25 

3BN50 

3BN7 5 

3BN100 

4BN100 

4BN40 

3. 6 3 ~ 1 0 - ~  1.652 25 

50 3 . 8 4 ~ 1 0 - ~  1.677 

75 3 . 6 3 ~ 1 0 - ~  1.691 

1.696 4. o ~ x ~ o - ~  

4 . 6 5 ~ 1 0 - ~  

100 

100 1.696 

40 1.90x10-~ 1.670 

3BN150 I 150 1.32xlO-~ 1.705 

~ 

aFirst digit: 3 has 1/2-in. -diam heater coil and boron nitride heater supports, while 4 has 1-in. -diam heater 
coil and tungsten heater supports; le t ters  W and BN indicate tungsten o r  boron nitride nozzle body; las t  
digits indicate nozzle area ratio. 
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thrustors a r e  identified in table I by the first digit of the unit designation. The number 3 
refers to a unit with a l/a-inch-diameter heater coil with heater supports made of boron 
nitride. 
made of tungsten. The letters W and BN refer to tungsten or boron nitride nozzle 
bodies, respectively. Only the 3W25 unit has a tungsten nozzle body. All other nozzle 
bodies were made of boron nitride to simplify fabrication. 
bodies performed satisfactorily for the comparatively short runs and moderate tempera- 
tures required to obtain the necessary performance data. The remaining digits indicate 
the nozzle area ratio. 

The number 4 corresponds to a 1-inch-diameter heater coil with heater supports 

The boron nitride nozzle 

Range of Test Parameters 

Data were obtained on each of the seven different nozzles at propellant flow rates of 
0. ~ x I O - ~ ,  1. OX10-4, and 2 . 5 ~ 1 0 - ~  pound per second. For each of these propellant flow 

4 rates,  specific power (input electrical power/propellant flow rate) values of 0, 0. 5x10 , 
l.OXl0 , and 1. 5x10 kilowatts per pound per second were used except for the lowest 
propellant flow rate of 0. 5 ~ 1 0 - ~  pound per second. At this flow rate, a single specific 
power point of approximately 1. 2x10 kilowatts per pound per second was used corre- 
sponding to the minimum current output of the power supply for the heater coils used. No 
higher specific power points were attempted because of the marginal thrustor cooling at 
this low flow rate. 

second to minimize the component problems that a r e  encountered at the higher propellant 
temperatures. 
15 minutes, during which time the measured stagnation pressure was monitored to assure  
that equilibrium conditions had been achieved. 

4 4 

4 

4 The maximum specific power value was  limited to 1. 5x10 kilowatts per pound per 

Each specific power point was held for a period of time in excess of 

Research Facility and Instrumentation 

The experimental program was conducted in one of the large vacuum tanks at the 
Lewis Research Center. This facility (described in detail in ref. 12) has a diameter of 
15 feet and a length of 63 feet. Exhaust pumping speed capabilities of 12 000 cubic feet 
per minute provided ambient pressures below 0 .3  millimeter of mercury for all pro- 
pellant flow rates. 
plete expansion for all the nozzle area ratios studied. Electrical power was supplied by 
a commercial solid- state conversion d-c power supply. Gaseous hydrogen was supplied 
from a bank of four commercial hydrogen bottles. 

The low ambient pressures were more than sufficient to ensure cam- 
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Hydrogen 
supply 

I 

1-1 d-c Power1 

Figure 6. - Schematic drawing of t h r u s t  stand and instrumentat ion.  

A schematic drawing of the thrustor 
mounting and system instrumentation is 
shown in figure 6. The propellant flow 
rate was metered by a calibrated choked 
orifice with strain-gage pressure trans- 
ducers to measure orifice upstream and 
downstream pressures. Thrustor cham- 
ber pressure was measured with a 
Bourdon tube-type absolute-pressure 
gage and a strain-gage pressure trans- 
ducer. Voltage and current measure- 
ments were made with conventional in- 
strumentation. Thrust measurements 
were made with a four-point suspension- 
platform-type thrust stand (ref. 13). A 
differential transformer immersed in an 
oil bath, to maintain a constant- 
temperature environment, was used as 
the thrust - sensing element. 

The overall measurement accuracy 
of the data is as follows: chamber pres- 
sure  and propellant flow rate measure- 

ments a r e  accurate to within k2 percent. Thrust measurements as determined by weight 
calibration before each test run under vacuum conditions a r e  accurate to within &1 milli- 
pound. 
proximately *lo percent a t  the low-thrust levels and *3 percent at the high-thrust levels. 

The overall accuracy of the measured thrust coefficient is estimated to be ap- 

DATA REDUCTION 

The measured data, along with other computed values, are presented in tables I 
and II for each of the seven different nozzle configurations. Table I (p. 8) presents the 
cold-flow data (obtained without heat addition) and table II presents the hot-flow data (ob- 
tained with heat addition to the propellant). 

The measured thrust coefficient and the corresponding loss in thrust coefficient are 
calculated as 
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TABLE II. - HOT-FLOW DATA 

Nozzle 
throat 
flow 

area,  

sq in. 
Ath' 

Nozzle 
a rea  
ratio, 

*e'Ath 

Isentropic 
thrust 

:oefficient, 

Fi 
C 

Propellant 
flow rate, 

W, 

lb/sec 

deasured 
total 

iressure, 

'my 
psia 

neasured 
thrust, 

Fm9 
l b  

deasured 
thrust  

oefficient, 
C 

Frn 

Difference 
between 

calculated 
isentropic 
and mea- 

sured 
thrust 

:oefficient, 
C 
Fe 

Throat 
Reynoldr 
number, 

Reth 

4770 
4270 
1785 
1565 
1895 
1575 
1550 
1400 
867 
844 
8 23 
867 

Unit 
Lesigna- 
tion 

(a) 

3W25 

3BN50 

~ 

3BN75 

3BN100 

25 

50 

1.652 2. 5 x 1 0 - ~  
2. 5 
1. 0 
1. 0 
1.0 
1 .0  
1. 0 
1 . 0  
. 5  
. 5  
. 5  
. 5  

21. 5 
23. 4 
9.4 

10.4 
9 .0  

10.35 
10. 5 
11. 3 
4.9 
5. 0 
5. 1 
4 .9  

14. 5x10- 
24. 2 
43.4 
47.8 
42. 7 
48.9 
48. 7 
51. 6 
18.7 
19. 6 
19 .8  
18.05 

1.468 
1.463 
1. 280 
1.267 
1.308 
1.300 
1.278 
1. 259 
1.051 
1.080 
1.070 
1.014 

0. 184 
.189 
.372 
.385 
. 344 
. 352 
. 374 
.393 
. 601 
. 572 
. 582 
. 638 

1.677 2. ~ X I O - ~  

2. 5 
2. 5 
1 .0  
1. 0 
1. 0 
1. 0 
. 5  

20. 6 
25. 3 
28. 5 

8. 75 
10. 3 
11.05 
11.75 
4 .4  

13.0X10- 
37. 0 
53.0 
42. 3 
48.9 
51. 8 
53. 8 
18.05 

1.430 
1.410 
1.398 
1.260 
1.235 
1.220 
1. 193 
1.068 

0. 247 
. 267 
. 279 
.417 
.442 
.457 
.484 
. 609 

4740 
3610 
3070 
1820 
1465 
1330 
1225 
903 

75 

100 

~~ ~ 

3. 6 3 ~ 1 0 - ~  

1 . 0 7 ~ 1 0 - ~  

1.691 

1.696 

22. 0 
25. 7 
28. 9 
9 .4  

11.0 
11. 8 
4.9 

18. 5x10- 
36. 5 
53.0 
46. 1 
50.3 
52. 7 
18. 5 

1.485 
1.462 
1.458 
1. 350 
1.261 
1. 230 
1.040 

0. 206 
. 229 
. 233 
. 341 
,430  
,461  
.651  

47 50 
3890 
3300 
1780 
1445 
1330 
890 

2. 5 x 1 0 - ~  
2. 5 
2. 5 
1. 0 
1. 0 
1. 0 
. 5  

2. 5 x 1 0 - ~  
2. 5 
2. 5 
2. 5 
2. 5 
1 . 0  
1. 0 
1. 0 
1 .0  
1 .0  
. 5  
. 5  

23.6X10- 
42. 6 
45. 5 
21.3 
41.4 
41.9 
50. 8 
54.2 
47.9 
53.3 
17.43 
18.05 

1.420 
1.413 
1.381 
1.455 
1.396 
1.225 
1.272 
1.190 
1.190 
1.173 
.985 

1.010 

3940 
3220 
3050 
4170 
3200 
1755 
1430 
1195 
1405 
1205 
880 
867 

0. 276 
. 283 
.315 
. 241 
.300 
.471  
.424 
. 506 
.506 
. 523 
. 711 
.686 

21. 4 
24. 8 
25. 9 
20. 5 
24.9 
8. 4 
9. 82 

11. 2 
9 .9  

10. 15 
4. 35 
4. 40 

.First digit: 3 has 1/2-in. -diam heater coil and boron nitride heater supports, while 4 has 1-in. -diam heater 
coil and tungsten heater supports; le t ters  W and BN indicate tungsten or boron nitride nozzle body; las t  
digits indicate nozzle a rea  ratio. 
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TABLE II. - Concluded. HOT- FLOW DATA 

Unit 
designa 

tion 

(a) 

4BN10t 

4BN40 

3BN150 

Nozzlc 
area 
ratio, 

W t J  

100 

40 

150 

Nozzle 
throat 
flow 

area, 

sq in. 
Ath, 

4. 65x10- 

1.9oxlO-' 

. 32x10-2 

Isentropic 
thrust 

:oeffic ienl 
C 
Fi 

1.676 

1.670 

1.705 

Propellan 
flow rate, 

w, 
1 b/s ec 

2. 5x10-~ 
2. 5 
2. 5 
1. 0 
1.0 
1.0 
1. 0 
. 5  
. 5  

2.5x10-~ 
2. 5 
2. 5 
1. 0 
1.0 
1.0 
. 5  
. 5  

2. 5x10-~ 
2. 5 
2. 5 
2. 5 
1. 0 
1.0 
1. 0 
. 5  

~ 

Measurec 
total 

iressure, 

Pm, 
psia 

15.9 
21. 1 
23. 3 
8. 5 
7.9 
7.2 
9.1 
3.4 
3. a 

a. 35 
6. 6 

9. 6 
2.70 
3.35 
3.90 
1. 70 
1.78 

59.4 
59.05 
73. 8 
78.4 
24.4 
28.6 
31.85 
13.0 

Weasur E 

Fm, 
lb 

thrust, 

13.4X10 
47.0 
60.4 
48. 7 
48. 1 
45. 2 
54.4 

19. 6 

10. 7x10' 
35. 2 
54. 0 
39.1 
L6. 6 
i2. 3 

ia. 3 

La. 54 

La. 5x10- 
6. a 

18.95 

:5. 4 
18.4 
3. 0 
a. 5 

7. a6 
13. 0 

neasured 
thrust 

oefficienl 

Fm 
C 

1.534 
1.497 

1.232 
1.310 
1. 350 
1.285 
1.157 
1.110 

1.480 

1.408 

1.348 
1.360 

1. 217 
1.170 
1. 127 
.917 
.895 

1. 512 
1.496 
1.491 
1. 532 
1.335 
I. 285 
1. 260 
1.041 

Differencc 
between 

calculated 
isentropic 
and mea- 

sured 
thrust 

coefficient, 
C 
FQ 

0. 162 
. 199 
. 216 
.464 
.3a6 
.346 
,411 
.539 
.sa6 

0. 262 
.310 
.322 
,453 
. 553 
.543 
.753 
,775 

0. 193 
. 209 
.214 
. 173 
.370 
.420 
,445 
. 664 

Throat 
Reynold: 
number: 

Reth 

4310 
2970 
2610 
1235 
1370 
1545 
1128 
895 
773 

2650 
1945 
1615 
1095 
a38 
6 a0 
443 
425 

7740 
7800 
5780 
5360 
30 50 
2460 
2140 
1445 

First digit: 3 has 1/2-in. -diam heater coil and boron nitride heater supports, while 4 has 1-in. -diam heater 
coil and tungsten heater supports; letters W and BN indicate tungsten or boron nitride nozzle body; last 
digits indicate nozzle area ratio. 
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c = c  - c  
FQ Fi Fm 

The throat Reynolds number is defined as 

Since the propellant temperature was not measured (except at the cold-flow conditions), 
the viscosity for the hot-flow data could not be explicitly evaluated. Therefore the follow- 
ing approximate method was used to determine the throat Reynolds numbers. 

For the cold-flow data, the viscosity was evaluated at the throat temperature cor- 
responding to an isentropic process from the known stagnation temperature of 530' R. 
For the hot data, the throat Reynolds number ratio (Reth, cold/Reth, hot ) for the same 
nozzle throat diameter and the same propellant flow rate  is given by 

Reth, hot - - I-lth, cold 

Reth, cold h h ,  hot 

For the temperature range covered, an adequate expression for the viscosity of hy- 
drogen (fitted to the data of ref. 3) is ,u a T 2 I 3 .  Equation (12) can then be expressed 
as 

Reth, hot - - P t h ,  

Reth, cold \Tth, hot ) 

For a one-dimensional isentropic process, the temperature at the nozzle throat is 
- 2  proportional to (PthAth/w) . For conditions in which the nozzle throat a rea  and propel- 

lant flow rate a r e  constant, the temperature ratio in equation (13) is then given by 

If it is assumed that the pressure at the nozzle throat and the measured chamber pressure 
are similarly related for conditions of both hot and cold flow as 

13 



(?) cold =(?lot 
the ratio of the cold to the hot throat Reynolds number can 

Reth, hot N p m ,  ~ o l d \ ~ ’ ~  

Reth, cold \’m, hot J 

be approximated by 

(15) 

Although this approximate procedure for estimating the propellant temperature may in- 
troduce inaccuracies, the resulting e r ro r  is considered to be within the experimental 
accuracies of the other parameters. 

EXPERIMENTAL RESULTS 

The experimental data a re  suitable for the determination of thrustor performance 
but they a r e  not suitable for a precise interpretation of the nature or the mechanism of 
the nozzle losses. This statement is especially applicable to the hot data, which includes 
both viscous and heat-transfer effects, that cannot be separated from each other. The 
data a r e  useful, however, to identify correlating parameters for analytically predicting 
overall performance. 

nozzle. The trends exhibited by these data a re  typical of all the other nozzles. The de- 
creasing thrust coefficient with decreasing throat Reynolds number is consistent with the 
predictions of the laminar-flat-plate analysis, but the magnitude of the measured thrust 
coefficients is much less. This was not unexpected and indicates that the conical nozzle 
losses a r e  much higher than the calculated laminar-flat-plate losses. The magnitude of 
the measured thrust coefficients a t  the low throat Reynolds numbers is also significant. 
The measured thrust coefficient decreases from a value of approximately 1.45 at 
Reth M 10 000 to a value of approximately 1.05 at Reth M 850. 
than the calculated isentropic thrust coefficient (1. 27) for a choked orifice. 

given throat Reynolds number. If equation (7) is used as a guide to estimate the differ- 
ence between the hot and cold data, the experimental trend is contrary to that predicted 
by the analysis. The only parameter in equation (7) that changes as a result of the 

Figure 7 presents the thrust coefficient for the cold and the hot data for the 3W25 

This latter value is less  

In figure 7, the hot-flow thrust coefficients a r e  higher than the cold-flow values at a 
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?area rat io of 25 

f rom fig. 4 f o r  
Fi Fv 

Solid symbols denote cold flow 
Open symbols denote hot  flow I l i t  I I I l l  I Lj 

600 1m moo 4Ooo 6Ooo 10000 2oOOo moo0 
Throat Reynolds number, Reth 

Figure 7. - Typical comparison of hot  and cold t h r u s t  coefficients. U n i t  
designation, 3W 25. 

differences between the hot and cold operating conditions is the factor fo,  which depends 
on the wall temperature. For cold flow, the expansion process is essentially adiabatic, 
and therefore Tw/To M 1.0. For hot flow where cooling of the nozzle walls occurs by 
radiation, Tw/To < 1. 0. As T ~ / T ~  decreases, the loss in thrust coefficient, as given 
by equation (7) (including viscosity effects), increases and correspondingly the thrust 
coefficient for the hot-flow data at a given throat Reynolds number should be less  than 
that for the cold data. The experimental data therefore indicate that the throat Reynolds 
number based on the local s t ream temperature is not a good correlating parameter both 
for the hot- and cold-flow data. 

Even though the free-stream throat Reynolds number would not correlate both the hot 
and cold data, it seemed probable that a suitable correlation could be developed for the 
loss in thrust coefficient i f  the throat Reynolds number were based on an appropriate ref-  
erence temperature. 
The throat Reynolds number based on the wall temperature is given by 

The nozzle-wall temperature was found to be an acceptable choice. 

PwUd 
Reth, w (T) 

th 

In terms of the previous throat Reynolds number, equation (16) becomes 

For the conventional boundary-layer assumption of zero radial pressure gradient and 
a viscosity-temperature relation for hydrogen of ,u cc T 2/3 , Reth, is given by 
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For the cold-flow data, the nozzle-wall temperature can be approximated by the adia- 
batic wall temperature. Thus, for a laminar recovery factor of 0. 84, 

For the hot data, an estimate of (T/Tw) is not as straightforward. Optical pyrom- 
th 

e ter  measurements indicated that the nozzle-wall temperature for similar operating con- 
ditions was of the order of 0. 50 < Tw/TE < 0.66, where TE is the ideal temperature 
the propellant would attain in the heater chamber for a heating efficiency of unity (i. e. , 
if  all the input electrical power were converted to thermal energy). If TE is introduced, 

If the value of Tth/TE is taken as the one-dimensional isentropic value of 0.833 and 
Tw, th/TE is approximated as Tw, th/TE M Tw/TE = 0.6, an estimate for (T/Tw) 

th, hot 
is 

--- o s  833 - 1.388 - (9 0. 60 
th, hot 

Although a constant value of (T/Tw) is unlikely for the complete range of op- 
th. hot 

erating conditions covered herein, a more' accurate value could not be obtained in this 
investigation. 

Figure 8 is a comparison of the hot and cold losses in thrust coefficient in terms of 
The data indicate, in general, that, at Reth, w 

the high propellant flow rates  where the heat-transfer losses and thermal-boundary layer 
are small, the hot and cold loss in thrust coefficient are of the same magnitude. As the 
propellant flow rate decreases, the losses for the hot data tend to increase over that of 
the cold-flow data at the same value of Reth, w. 

for each of the seven different nozzles. 
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(d) Nozzle area ratio, 100, unit designa- 
a? tion, 3BN100. 
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\ 
0 
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(b) Nozzle area ratio, 5Q uni t  designa- (cl Nozzle area ratio, 75, unit designa- 
tion, 3BN50. Zion, 3BN75. 

[ - 
I ! ! ! ! I l l  

Propellant 
flw rate, 

Ib/sec 

o 2 . 5 ~ 1 0 - ~  
0 1.0 
0 .5 

(e) Nozzle area ratio, 100, unit designa- 
tion, 4BN100. 

Wail temperature throat Reynolds number, Rqh,w 

(f) Nozzle area ratio, 40, uni t  designation, 4BN40. (g) Nozzle area ratio, lS0, unit designation, 3BN150. 

Figure 8. - Comparison of hot and cold data in terms of wall temperature throat Reynolds number. 
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Figure 9. - Correlation of loss i n  t h r u s t  coefficient for  cold-flow data. 

Nozzle area ratio, 

The curves shown in figure 8 have the functional form C (Reth, w)- 1/2 and a re  

a consistent and reasonable approximation of the data, except for the 4BN100 nozzle. 
data obtained with the 4BN100 nozzle were much different from the data obtained with the 
3BN100 nozzle. In addition, the slope of the line to f i t  the 4BN100 nozzle data was not 
consistent with the data f rom all the other nozzles. No explanation can be given for this 
difference. 

sistent trend of increasing losses with increasing nozzle a rea  ratio. The area-ratio 
correlation can best be shown in terms of the cold-flow data as presented in figure 9. 
Based on a straight-line correlation of the data, the final relation for the loss in thrust 
coefficient is given by 

Fv 
The 

All the data (except that for the 4BN100 nozzle) presented in figure 8 exhibited a con- 

\ c =  
) 1/2 

(Reth, w 
FQ 

The effectiveness of this correlation to estimate the thrust coefficient for both cold- 
and hot-flow conditions for the a rea  ratios investigated is shown in figure 10. The data 
lie in a &5-percent band, except for the data from the 4BN100 nozzle and the data at the 
lowest propellant flow rate. It is believed that the reason the data at the lowest propel- 
lant flow rate deviate from the correlation is that the heat-transfer losses become more 
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Figure 10. - Comparison of experimental t h r u s t  coeff icients w i th  values 
calculated f rom correlat ion. 

important at low throat Reynolds num- 
bers. However, these data at the low 
propellant flow rates should not be 
considered as general but rather as 
characteristic of the radiation-cooled 
thrustor used in this study. Heat- 
transfer losses are governed by de- 
sign considerations. Other nozzle- 
cooling methods, sizes, and mate- 
rials could yield different results. 

The approximations made to ob- 
tain the final correlation of the data 
may not be suitable for other ranges 
of propellant flow rates and specific 
power levels than those investigated 
herein. 
assumed that Tw/TE = 0.6 for the 
hot data and that Tw/TE = 1.0 for 
the cold-flow test data. 

For example, it has been 

This temper- 
ature ratio, of course, must vary continuously with the propellant temperature. F’urther- 
more, the nozzle-wall temperature has an axial variation and is not constant as was as- 
sumed. Additional research is required to refine the correlation and to understand better 
the various mechanisms contributing to the losses in low-thrust-level nozzles. 

CONCLUSIONS 

The following conclusions regarding the performance losses of nozzles at -3w-thrust 

1. Nozzle losses can seriously degrade the thrust coefficient of nozzles with low 
levels have been drawn from the experimental data: 

throat Reynolds numbers to values much below those calculated for an  isentropic expansion 
process. In fact, thrust coefficients were  measured that were less than the calculated 
thrust coefficient for isentropic flow through a choked orifice. 

2. The measured nozzle losses are significantly greater than the viscous losses cal- 
culated from the skin friction relation for laminar flow over a flat plate. The trends, 
however, in terms of increasing losses with decreasing throat Reynolds numbers are 
similar. 
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3. A qualitative correlation of the loss in thrust coefficient for both the hot and cold 
data was obtained in te rms  of the nozzle a rea  ratio and throat Reynolds number in which 
the temperature-dependent properties (density and viscosity) a r e  evaluated at the nozzle 
wall temperature. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 26, 1965. 
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APPENDIX A 

SYMBOLS 

A 

A/%h 

eff 
(A/Ath) 

C 

cF 

FQ 
C 

C 
Fv 

d 

F 

FQ 

FV 

g 

M 

P 

P 

Re 

r 

S 

S 

nozzle flow area  

geometric nozzle area ratio 

effective nozzle a rea  ratio 

factor of proportionality in 
eq. (B7), P,/P = C(TW/T) 

thrust coefficient, F/PoAth 

difference between calcu- 
lated isentropic thrust 
coefficient and measured 
thrust coefficient 

loss in thrust coefficient 
due to boundary-layer vis- 
COUS losses, Fv/PoAth 

nozzle diameter 

thrust 

loss in thrust due to 
nozzle losses 

loss in thrust due to vis- 
cous drag on nozzle sur-  
face 

gravity acceleration 

Mach number 

total pressure 

pressure 

Reynolds number 

nozzle radius 

nozzle surface 

distance along nozzle 
surface 

T 

TE 

U 

W 

X 

a! 

Y 

6* 

x 

P 

P 

7 

Subscripts : 

e 

ht 

i 

m 

0 

th 

V 

W 

X 

temperature 

ideal temperature attained 
by propellant for heating 
efficiency of unity 

fluid velocity 

propellant flow ra te  

axial distance along nozzle 

nozzle divergence angle 

specific heat ratio 

displacement thickness 

nozzle angle divergence coef- 
ficient, A = (I + cos a)/2 

fluid viscosity 

fluid density 

shear s t ress  

nozzle- exit conditions 

heat- transfer effects 

isentropic conditions 

experimentally measured 
values 

stagnation conditions up- 
s t ream of nozzle throat 

throat conditions 

viscous effects 

wall conditions 

axial component 
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APPENDIX B 

CONICAL NOZZLE VISCOUS LOSSES 

It will  be assumed in the following development that (1) the important viscous losses 
take place in the supersonic portion of the nozzle, (2) the boundary layer begins at the 
nozzle throat, (3) the nozzle is an isothermal surface, and (4) the local flow conditions 
can be obtained in te rms  of the stagnation conditions from one-dimensional isentropic- 
flow relations. The divergent portion of a conical nozzle with pertinent coordinates is 
shown in figure 1 (p. 3). 

face integral of the local shear s t ress  over the nozzle surface: 
The loss in thrust due to the axial component of the viscous drag is given by the sur-  

Fv =L 27171 cos a ds 

For purposes of calculation, it is desirable to express equation (Bl) in terms of the 
geometric nozzle a rea  ratio A/Ath. 
area ratio as follows: 

The linear coordinates a re  related to the nozzle 

Equation (Bl) may now be written in the form 

V 

The loss in thrust can be expressed in terms of a loss in thrust coefficient C by 
FV 
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The loss in thrust coefficient can be computed by substituting into equation (B5) the ap- 
propriate expression for the local shear s t ress  T and then performing the indicated in- 
tegration. Unfortunately no useful relations for  the laminar shear s t r e s s  on a nozzle sur- 
face a re  known. However, the skin friction relation for laminar flow over an iso- 
thermal flat plate provides a simple initial approximation for comparison with exper- 
iment. This expression, as given in reference 9, is 

-0. 5 
-- ' - 0.664 Co- (7) 
1 2  ., PU 
Y 

The constant C relates the viscosity and temperature at the wall and free-stream con- 
ditions : 

The local length Reynolds number in equation (B6) can be expressed in terms of the noz- 
zle throat Reynolds number Reth as follows: 

By suitable substitution of the one-dimensional isentropic-flow relations and equation (B2) 
into equation (B8), the local length Reynolds number can be written as 

Pux - 
I-1 

- -  

p o l l  T o 1  

For a perfect gas, i p u 2  is given by 
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I 
I 

Y 

-pu 1 2  = - P o M  y 
2 2 2 T P 1  (--) 

Substituting equations (B7), (B9), and (B10) into equation (B6), and the resulting ex- 
pression for the shear s t r e s s  into equation (B5) yields 

c =  0.664 f [e’Ath f d ( . )  
V (Reth *th 

F 

where 

f = y  0 

%=(E- 3 - 1/2 

5y- 3 

The local s t ream properties M and T/To in the parameter f a  are evaluated from one- 
dimensional isentropic relations for the local geometric nozzle area ratio (uncoupled case) 
or at an effective nozzle a rea  ratio (coupled solution), which includes the influence of the 
boundary-layer growth on the free-stream conditions. 

boundary-layer displacement thickness and geometric nozzle a rea  ratio by 
For the coupled solution, the effective nozzle a rea  ratio is defined in terms of the 

(e)eff = &  (1 -:)2 
24 



where 

r x r  r x th 

For laminar flow over a flat plate with constant wall temperature, S*/x may be de- 
rived from reference 9 as 

1/2 - -  6* - c1/2 (E)- [L 73 + 1. 11(y- 1)Mq 
X P 

where C and the local length Reynolds number a r e  given by equations (B7) and (B9). 
Hence, 6*/r may be expressed as 

where 

g0 i 
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1. 73 + 1. l l ( y -  1)M2 
g2 = 

3- Y 

Equation (B15) must be solved by iteration to account for the change in free-stream 
conditions in g2 due to the boundary-layer growth. As a first approximation, equation 
(B15) may be solved assuming (A/Ath) = A/Ath. This gives a value of 6*/r that per- 

mits equation (B12) to be solved for (A/Ath) 
ef f 

culation. 
boundary layers the process is facilitated by using a graphical solution. 

eff 
, which becomes the basis for the next cal- 

If the boundary layer is thin, this process converges rapidly but for thick 
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